Первое поколение: Электровакуумные лампы, 1946 – 1956

В первом поколении компьютеров для хранения и обработки информации применялись электровакуумные лампы. Лампы потребляли много энергии, были недолговечными и выделяли много тепла. Огромные в размерах, компьютеры первого поколения, имели маленькую память, их вычислительные способности были сильно ограничены. Поэтому применялись они для решения очень узкого круга научных и инженерных задач. Наибольший размер памяти этих компьютеров был 2000 байт (около 2 килобайт), а скорость обработки – 10000 инструкций в секунду. В качестве устройств внутренней памяти использовались вращающиеся магнитные барабаны, а для внешнего хранения данных применяли перфокарты. Такие задачи, как запуск программ и вывод на печать, координировались вручную.

Второе поколение: Транзисторы, 1957 – 1953

В компьютерах второго поколения в качестве устройств для хранения и обработки информации на смену вакуумным лампам пришли транзисторы. Транзисторы были более стабильны, чем лампы, они выделяли меньше тепла и потребляли меньше энергии. Однако каждый транзистор представлял собой отдельную деталь, которую нужно было впаять в печатную плату – медленный, трудоемкий процесс. На этом этапе в качестве первичных устройств хранения информации применялась технология памяти на магнитных сердечниках. Она состояла из маленьких (около 1 мм в диаметре) магнитных колец, которые поляризовались в двух направлениях, представляя таким образом бит данных. Эта память собиралась вручную, и поэтому была очень дорогой. Компьютеры второго поколения имели до 32 килобайт оперативной памяти, а скорость вычислений их была от 200000 до 300000 операций в секунду. Увеличение скорости обработки и количества памяти компьютеров второго поколения позволило использовать их для решения более широкого круга научных и бизнес-задач, таких как автоматическое выполнение платежных операций.

Третье поколение: Интегральные схемы, 1964 – 1979

Третье поколение компьютеров создавалось на основе интегральных схем (ИС), которые состояли из тысяч и тысяч крошечных транзисторов, помещенных внутрь микросхем. Память компьютеров расширилась до двух мегабайт, а скорость обработки возросла до 5 MIPS. Программное обеспечение компьютеров третьего поколения позволило использовать эти сложные машины людям, не имевшим специальной подготовки, что привело к усилению роли компьютеров в бизнесе.

Четвертое поколение: Сверх Большие Интегральные Схемы, 1980 – настоящее время

Четвертое поколение компьютеров зародилось в начале 80-х и существует по наши дни. Основой компьютеров этого поколения стали Сверхбольшие Интегральные Схемы (СБИС), в одном корпусе которых содержатся миллионы транзисторов. Цены снизились настолько, что компьютеры стали недорогими и нашли широкое применение в бизнесе и повседневной жизни. Мощь компьютера, занимавшего недавно большую комнату, переместилась в маленький корпус. Размеры оперативной памяти выросли до 7 и более гигабайт в больших машинах, применяемых для коммерческих расчетов; скорость обработки превысила 200 MIPS. В разделе 1.7 мы обсудим дальнейшие тенденции развития аппаратного обеспечения компьютеров.

Технологии СБИС сделала возможным микроминиатюризацию – распространение компьютеров, которые столь малы, быстры и дешевы, что стали применяться повсеместно. К примеру, многие современные автомобили, стереосистемы, фото- и видеокамеры, игрушки, часы, даже устройства бытовой техники содержат микропроцессоры, управляющие работой этих устройств.